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Abstract. The nondegenerate two-photon interaction of a two-level atom with a broadband multimode
squeezed vacuum is investigated. We find that in the two-photon process the squeezed vacuum has a
driving effect on the atom which can lead to an ac Stark effect when the average photon number of the
squeezed vacuum is larger than a critical value.

PACS. 42.50.-p Quantum optics – 32.80.-t Photon interactions with atoms

1 Introduction

In recent years, squeezed light sources have become avail-
able in the laboratory and a great deal of attention has
been given to the interactions between the squeezed light
and the atomic systems. The pioneer work performed by
Gardiner in 1986 suggested that the atomic phase decay
can be inhibited by a squeezed vacuum as compared to the
normal vacuum, thus leading to a subnatural linewidth
in the atomic fluorescence spectrum [1]. The subnatu-
ral linewidth phenomena in the resonance fluorescence [2]
and the absorption spectrum [3] for such systems were re-
ported in the further studies by others. Many new features
of the squeezed light interactions, such as atomic level
shifts [4] and the generalized Bloch-Siegert shifts [5], were
also found in the one-photon processes. Because of the
strong two-photon correlations present in squeezed light, it
is natural to extend such studies to the two-photon inter-
actions between the atom and the squeezed light. However,
in most of the early studies, the two-photon processes are
almost about three-level atomic systems [6]. To our knowl-
edge, the investigations of the nondegenerate two-photon
interactions between a two-level atom and a broadband
squeezed vacuum have not been reported up to now. The
purpose of this paper is to solve this problem. We find
that in the two-photon process the squeezed vacuum has
a driving effect on the atom which can lead to an ac Stark
effect when the average photon number of the squeezed
vacuum is larger than a critical value. That is, the fre-
quency shifts can occur in the oscillation of the atomic
dipole moment, thus the atomic two-photon fluorescence
spectrum can exhibit a three-peaked structure.
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2 Model and master equation

The interactions between a single two-level atom and a
multimode light field can be described by a Dicke Hamil-
tonian for one-photon [7] and multiphoton [8] processes.
Recently, He et al. studied the nondegenerate two-photon
interactions between a two-level atom and the multimode
light field in a normal vacuum state [9] and in a squeezed
vacuum state [10], respectively. Following He et al., we
consider that a single atom, having two levels of the same
parity, is coupled to a broadband multimode squeezed vac-
uum via a nondegenerate two-photon process. One-photon
transition is assumed forbidden. The Hamiltonian of the
system in the rotating-wave approximation is of the form

H = HA + HF + HI, (1)

where HA and HF are the free Hamiltonians of the atom
and the light field, respectively, HI is the interaction
Hamiltonian,

HA =
1
2

�Ωσz,

HF = �

∫
dωb†(ω)b(ω)ω,

HI = �

∫
dωdω′g(ω, ω′)[b(ωc + ω)b(ωc + ω′)σ+

+b†(ωc + ω)b†(ωc + ω′)σ], (2)

where Ω is the frequency of the atomic transition, σ, σ+

and σz are the pseudospin atomic opertors, b(ω) (b†(ω))
is the photon annihilation (creation) operator with fre-
quency ω of the squeezed vacuum, ωc is the central fre-
quency of the squeezed vacuum, g(ω, ω′) is the coupling
constant.



118 The European Physical Journal D

We treat the broadband squeezed vacuum as a reser-
voir into which the two-level atom decays through two-
photon transition. In practice, as emphasized by Gar-
diner [1] and Carmichael et al. [2], it is difficult to prepare
the broadband squeezed environment, which requires all
the modes that interact with the atom to be squeezed.
That is, the squeezed modes must occupy the whole 4π
solid angle of space. In order to overcome this obstacle,
many schemes have been put forward to mimic such an en-
vironment by means of more convenient methods [11–14]
recently. Lutkenhaus, Cirac and Zoller proposed a scheme
to realize such an environment by using the interference
between the different spontaneous emission channels of a
degenerate four-level system driven by weak fields [12].
Wiseman demonstrated that the in-loop squeezing pro-
duced by electro-optical feedback is like real squeezing to
an in-loop atom [13]. Zhou and Swain employed a two-
level atom driven by a strong coherent field and a weak,
amplitude-fluctuating field for mimicking a squeezed en-
vironment [14].

As a theoretical analysis, we still follow Gardiner’s
treatment in his original paper [1] and use the output from
a degenerate parametric oscillator (DPO) operating below
threshold [15] as a source of the broadband squeezed vac-
uum, assuming that the linewidth of the output from the
DPO is much larger than the linewidth of the atomic tran-
sition. For our convenience, we define a reservoir operator
as

F =
∫

dωdω′g(ω, ω′)b(ωc + ω)b(ωc + ω′). (3)

By extending Gardiner’s methods [1,16] to the two-photon
process, we obtain the mean values and the two-time cor-
relation functions of the reservoir operator F (t) and its
Hermitian conjugate operator F †(t),

〈F (t)〉 = 〈F †(t)〉∗ =
1
2

√
πΓC exp(−2iωct), (4)

〈F †(t)F (t′)〉=
1
4
πΓ

[|C|2+κN2δ(t−t′)
]
exp[2iωc(t−t′)], (5)

〈F (t)F †(t′)〉 =
1
4
πΓ [|C|2

+κ(N + 1)2δ(t− t′)] exp[−2iωc(t− t′)], (6)

〈F (t)F (t′)〉=
1
4
πΓ

[
C2+κM2δ(t−t′)

]
exp[−2iωc(t+t′)], (7)

〈F †(t)F †(t′)〉 = 〈F (t)F (t′)〉∗, (8)

where

C =
ζ2 − η2

2

(
1
ζ

+
1
η

)
exp (iθ) , N =

(ζ2 − η2)2

(2ζη)2
,

M =
(ζ2 − η2)(ζ2 + η2)

(2ζη)2
exp (iθ) ,

ζ =
1
2
κ+ | ε |, η =

1
2
κ− | ε |, ε = | ε | exp(iθ),

ε and κ are, respectively, the amplification constant and
the bandwidth of the squeezed vacuum [1,15]. N is the

average photon number. M and C are the measures of
the squeezing degree of the squeezed vacuum with the
relations | M |= √

N(N + 1) and | C |= κ
√
N . Γ =

2πg2(ωc)D(ωc) denotes the two-photon natural linewidth,
where D(ωc) is the mode density of the multimode field.

Equation (4) implies that the mean values of the reser-
voir operators, 〈F (t)〉 and 〈F †(t)〉, which are generally
zero for one-photon processes both in normal vacuum and
in squeezed vacuum and for two-photon processes in nor-
mal vacuum, are nonzero. The nonzero mean values of
F (t) and F †(t) arise from the two-photon correlations of
the squeezed vacuum. It is these terms that give rise to
the ac Stark effect discussed below. As indicated in equa-
tions (5-8), the correlation functions have a similar form
of two terms with the first term a constant and the second
a delta function. The constant term appears because the
reservoir operators have the nonzero mean values. If the
correlation functions are those in which these mean values
are subtracted, such as 〈(F (t)− 〈F (t)〉)(F (t′)− 〈F (t′)〉)〉,
and these are delta correlated as usual. So the squeezed
vacuum reservoir in the two-photon process is still Marko-
vian.

The master equation for the reduced density operator
ρ of the atom can be derived starting from the Hamilto-
nian (1), using the standard technique and the correla-
tions (4-8). On resonance (Ω = 2ωc), the equation in a
frame rotating at frequency Ω is given by

∂ρ

∂t
= − i

2

√
πΓ

(
C[σ+, ρ] + C∗[σ, ρ]

)
+

1
8
πκΓ

×
{

(N + 1)2
([

σρ, σ+
]

+
[
σ, ρσ+

])
+N2

([
σ+, ρσ

]
+

[
σ+ρ, σ

])
+M2

([
σ+ρ, σ+

]
+

[
σ+, ρσ+

])
+M∗2 ([σρ, σ] + [σ, ρσ])

}
. (9)

Not including the first term, the master equation (9) is
similar to that of one-photon process in the squeezed vac-
uum [1] but with the different coefficients. The first term
in equation (9) arises from the nonzero mean values of
the reservoir operators, it shows a driving effect of the
squeezed vacuum on the atom, because this term is the
same as the contribution of an external classical driving
field to the atom.

3 Two-photon Bloch equation and ac Stark
effect

From the master equation (9), we obtain the two-photon
Bloch equation

d
dt


〈σ〉
〈σ+〉
〈σz〉


=


 − 1

2γ B exp(i2θ) iR exp(iθ)
B exp(−i2θ) − 1

2γ −iR exp(−iθ)
i2R exp(−iθ) −i2R exp(iθ) −γ




×

 〈σ〉

〈σ+〉
〈σz〉


 −


 0

0
γ0


 , (10)
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where

γ =
1
4
πκΓ (2N2 + 2N + 1),

B =
1
4
πκΓ |M |2,

R =
1
2

√
πΓ |C |,

γ0 =
1
4
πκΓ (2N + 1).

The eigenequation corresponding to equation (10) is(
λ +

1
2
γ −B

)

×
[
λ2+

(
3
2
γ + B

)
λ+γ

(
1
2
γ + B

)
+4R2

]
=0 (11)

with the solutions

λ1 = −1
8
πκΓ,

λ2,3 = −1
2
πκΓ

[
N (N + 1) +

3
8

]

±1
2
κ

√(
1
8
πΓ

)2

− 4πΓN. (12)

Thus, the time-dependent analytical solutions for 〈σ(t)〉,
〈σ+(t)〉 and 〈σz(t)〉 can be found easily for the atom ini-
tially in the upper state,

〈σ(t)〉Normal = iRei(Ωt+θ)

×
[

λ2 − γ0

λ2(λ2 − λ3)
eλ2t+

λ3 − γ0

λ3(λ3 − λ2)
eλ3t − γ0

λ2λ3

]
, (13)

〈σ+(t)〉Normal = (〈σ(t)〉Normal)∗, (14)

where we have transformed the rotating frame into the
normal frame with the following relations:

〈σ(t)〉Normal = 〈σ(t)〉 exp(iΩt),
〈σ+(t)〉Normal = 〈σ+(t)〉 exp(−iΩt),

the subscript index Normal stands for in the normal frame.
From equation (12), we find that there is a threshold,

πΓ/162, for the average photon number N . When N is
below the threshold, the eigenroots λ2,3 are real. In this
case, equation (13) indicates that the atomic dipole mo-
ment oscillates with a single frequency Ω only. When N
is above the threshold, however, the eigenroots λ2,3 are
complex numbers,

λ2,3 = λR ± iλI,

λR = −1
2
πκΓ

[
N (N + 1) +

3
8

]
,

λI =
κ

2

√
4πΓN −

(
1
8
πΓ

)2

. (15)

In this case, equation (13) can be rewritten as

〈σ(t)〉Normal = iReiθ

[
− (λR − γ0) − iλI

2λI(λI + iλR)
eλRtei(Ω−λI)t

− γ0

λ2
R + λ2

I

eiΩt +
(λR − γ0) + iλI

2λI(−λI + iλR)
eλRtei(Ω+λI)t

]
. (16)

Equation (16) reveals that the atomic dipole moment os-
cillates with three different frequencies: the central fre-
quency Ω and the two sideband frequencies, Ω + λI and
Ω − λI. The two sideband frequencies are the shifts from
the central one, up and down, by the value λI, whose mag-
nitude depends on both the average photon number N and
the bandwidth κ of the squeezed vacuum field. This phe-
nomenon is generally called ac Stark effect. As analyzed
above, the ac Stark effect arises from the nonzero mean
values of the squeezed reservoir operators, i.e. from the
two-photon correlations of the squeezed vacuum. The ac
Stark effect can be detected by absorption and emission
experiments. In the next section, we shall give the atomic
two-photon fluorescence spectrum to demonstrate the ac
Stark effect.

4 Two-photon fluorescence spectrum of the
atom

The fluorescent light field consists of the elastically scat-
tered field and the inelastically scattered field, the latter
arises from radiation from the atom. In this section, we
shall calculate the spectrum of the inelastically scattered
field, i.e., the incoherent spectrum. In the two-photon pro-
cess, the incoherent spectrum is given by [9]

S(ω) =
1
π

Re
{∫ ∞

0

dτ〈δσ†(0)δσ(τ)〉ss exp
[
i

(
ω − 1

2
Ω

)
τ

]}
, (17)

where Re denotes the real part and δσ = σ − 〈σ〉, δσ+ =
σ+ − 〈σ〉+. The steady-state correlation function appear-
ing in equation (17) can be calculated by means of the
quantum regression theorem from the two-photon Bloch
equation (10) under the steady-state conditions

〈σ〉ss = (〈σ+〉ss)∗ = − iRγ0 exp(iθ)
λ2λ3

,

〈σz〉ss = −γ0(γ/2 + B)
λ2λ3

. (18)

We find that

〈δσ†(0)δσ(τ)〉 =
C1 exp (λ1τ) + C2 exp (λ2τ) + C3 exp (λ3τ) , (19)
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Fig. 1. Incoherent fluorescent spectra when N is below the
threshold for Γ = 100.0 and different N : N = 0.1 (dotted
line), N = 0.2 (solid line), and N = 0.5 (dashed line).

where

C1 =
(γ/2 + B)(γ − γ0) + 4R2

4λ2λ3
,

C2 =
λ3 + γ/2 + B

4(λ2 − λ3)

[
γ0(γ/2 + B)

λ2λ3
− 1

]

+
γ0R

2(λ2 + γ0)
λ2
2λ3(λ2 − λ3)

,

C3 =
λ2 + γ/2 + B

4(λ3 − λ2)

[
γ0(γ/2 + B)

λ2λ3
− 1

]

+
γ0R

2(λ3 + γ0)
λ2λ

2
3(λ3 − λ2)

. (20)

It is not difficult to prove that the coefficients Ci (i =
1, 2, 3) are independent of κ.

When the average photon number N is below the
threshold, the incoherent spectrum is given by

S(ω) = − 1
π

[
C1λ1

λ2
1 + (ω − 1

2Ω)2
+

C2λ2

λ2
2 + (ω − 1

2Ω)2

+
C3λ3

λ2
3 + (ω − 1

2Ω)2

]
. (21)

This is the sum of three Lorentzians all centered on Ω/2,
with widths 2λ1, 2λ2 and 2λ3, respectively. The lineshape
is shown in Figure 1.

When N is above the threshold, the incoherent spec-
trum is of the form

S(ω) = − 1
π

[
CRλR − CI

(
ω − 1

2Ω − λI

)
λ2
R +

(
ω − 1

2Ω − λI

)2
+

C1λ1

λ2
1 + (ω − 1

2Ω)2

+
CRλR + CI

(
ω − 1

2Ω + λI

)
λ2
R +

(
ω − 1

2Ω + λI

)2
]
. (22)
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Fig. 2. Incoherent fluorescent spectra when N is above the
threshold for Γ = 0.01 and different N : N = 0.1 (dotted line),
N = 0.2 (solid line), and N = 0.8 (dashed line).

Here, we have set C2,3 = CR ± iCI, with

CR =
1
8

[
1 − γ0(γ/2 + B)

λ2
R + λ2

I

]
− γ2

0R
2

2(λ2
R + λ2

I )2
,

CI =
1
8

[
1 − γ0(γ/2 + B)

λ2
R + λ2

I

]
λR + γ/2 + B

λI

−γ0R
2(λ2

R + λ2
I + λRγ0)

2λI(λ2
R + λ2

I )2
. (23)

Equation (23) indicates the incoherent spectrum has
a three-peaked structure, with the central peak at Ω/2
and two sidebands at Ω/2−λI and Ω/2+λI, respectively.
The two sidebands just correspond to the ac Stark shifts
discussed in Section 3. The two sidebands are of the same
width 2λR, but the width of the central peak is 2λ1. Fig-
ure 2 illustrates the three-peaked spectrum. From Figure 2
we can also find that the two sidebands move away from
the central peak and become wide as the average photon
number N increases. So if N is sufficiently large, the two
sidebands will disappear due to their too big widths.

5 Summary

In this paper, we have studied the nondegenerate two-
photon interaction of a two-level atom with a broadband
squeezed vacuum. We find that in the two-photon process
the squeezed vacuum has a driving effect on the atom as
an external classical field does. The driving effect can give
rise to an ac Stark effect when the average photon number
of the squeezed vacuum is larger than a threshold. That is,
the oscillating frequency of the atomic dipole moment can
be splitted from one to three, thus the atomic two-photon
fluorescence spectrum can exhibit three-peaked structure.
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